

Technologies for mining in the deep sea

Stanislav Verichev IHC Merwede B.V./MTI Holland B.V.

International Workshop for Students "Seafloor Mineral Resources: scientific, environmental, and societal issues"

18th March 2013

The technology innovator.

DEEP SEA MINING

General Risk Analysis:

identification of the key risks followed by the development of prevention/mitigation strategies

- 1. Geostatistical toolbox and SWORD
- 2. Hyperbaric cutting
- 3. Vertical hydraulic transport
- 4. Dynamics of the vertical transport system
- 5. Water hammer
- 6. Wear
- 7. Environmental impact

1.Geostatistical toolbox

core sampling \rightarrow Kriging interpolation \rightarrow geotechnical model of the area \rightarrow 2D/3D maps \rightarrow cutting forces and mining pattern

Key Features of the **SWORD**

- Sample sizes up to 4 inch.
- Operating depth up to 2 500m.
- Ground penetration up to 50m.
- Target sample integrity > 95%.
- Remote operation from vessel-based control center.
- Combines conventional rotary drilling with sonic drilling capability which is typically up to 5 times faster than conventional sampling methods.
- Wire-line system for down hole tooling and CPT tests.

2. Hyperbaric cutting

ductile vs. brittle \rightarrow cutting forces \rightarrow experiments \rightarrow modeling \rightarrow optimal deep sea mining tool

3. Vertical hydraulic transport

Fluidization tests at MTI Holland B.V.

Marbles

Rock blast gravel

Decreasing sphericity, increasing angularity

Shape and transport velocities

Experiments

Simulations

Concentration peak development

4. Dynamics of the vertical hydraulic transport system

Booster Stations (submersible dredge pumps)

Why correct modeling of dynamics is important?

- according to OREDA 2009, 16-24% of the total failures of the offshore oil production risers are fatigue-related failures;
- knowledge on maximal displacements and moments is critical for the design of joints and couplings;
- the model that accounts for all the aforementioned excitation sources has never been built and analyzed yet.

Internal and External Loads

Dynamical Pressures as a Result of Inhomogeneous Slurry Flow

Input Parameters		Data Selection		VTS build up
Riser parameters	Motor parameters	Graph 1	Graph 2	rie bain op
Diameter riser (m) 0.5	Max Torque [Nin] 30000	Boosterunit selection 1	Boosterunit selection 1	1
Length risersection (m) 300	Rotational stator current velocity (RPM) 578	Lock output	Clock output	
Total length riser (m) 900	q[-] 5	Choose data 💌	Choose data	C LI G
Appendices [-] 0	Check motor curve	Check motor curve Start Simulation		,
Pump persenteters Open motor purve input screen		Graph 3 Graph 4		
Total mass of inertia 300 [logfm2]	🔿 Eccel input 🕘 Formula input	Boosterund selection 1	Boosterunit selection 1	- u u-1
Nominal rotational velocity 578 [RPM]	- Simulation parameters	Choose data	Choose data	TI TI O
Open pump curve input screen	Simulation time (sec) 100			e c
Check pump curve	Amount of booster units 3			
Sturry parameters				N
Entrancetime mixture [sec] 20	Density water			5 0 ==
Transition length top (m) 20	Density mixture			S to a
Mixture length [m] 20				a a
Transition length bottom (m) 20	Transition Length top			
Density serveder [kg/m3] 1025	Mixture			E Siber section
Density mixture [kg/m3] 1300	↓ ++			5 g
Density solids (kg/m3) 3000	Length bottom			9 Moter Parma Boosts
if factor of politic attact [3] on a				

Subjects to be investigated for water hammer:

- Pump failure
- Bulk modulus mixture (under dynamic conditions)
- Model verification/validation
- Water hammer mitigation
- Other possible water hammer scenarios:
 - Breakage of a flexible hose
 - Startup & shutdown of the system
 - Valve failure
 - Free gas/gas hydrates handling, etc.

Abrasive wear at hyperbaric conditions

Wear rate vs. pressure. Low carbon steel m 1020 + emery stone, 1 h, N=1600, f=0.44 Hz, 2x0.7 kg

7. Environmental impact

JIP project

"Towards Zero Impact Approach for Deep Sea Offshore Projects"

Project objectives

- To develop a framework to be used as a preliminary impact assessment of the mining activities in the deep sea
- To determine the uncertainties of the methodology and to determine the sensitivity of the assessment framework to these uncertainties

Location International Seabed Authority Web GIS Application **e** 0 Legend About 9 Global Data 0 Polymetallic Sulphides lotes Add Data Foxe Basin \triangle Exclusive Economic Zones 200 NM \triangle Disputed Median Line Hudson Paru _ Treaty 0 Q Q Kingdon Poland Germany the Po France \triangle \triangle Vesifonidaria ATLANTIC OC MAR: Azores-Portugal EEZ. an 🛆 NORTH Morocco North American Algeria Basin Libya 1000 Mali Mauritania 1000 mi Cape Verde Niger -----

Location International Seabed Authority Web GIS Application ٩ 2 3 🗊 🤊 🕡 🕀 📩 About Notes Add Data 1179 Legend 0 ą Global Data 0 Polymetallic Sulphides Chatov Fracture Zone **GEBCO** Seabed Features • Surficial Sediment Types SGaillard ! Graciosa 0 Borda Sea Terrace Hydrothermal Vent Biology ▲ Acores Exclusive Economic Zones 200 NM 0 DON JOAO DE CASTRO BANK NORTH MENEZ GWENN 311 MENEZ GWEN MONACO BAS LUCKY STR rethe Seamoun NORTH FAMOUS FAMOUS AREA de Gloria Frecture $\Delta \Delta$ SALDANHA AREA, 38034 N MARFAMOUS RAINBOW HYDROTHERMAL FIELD AMAR MINOR Agorgs Este Fracture Zone SOUTH AMAR AMAR 2 NOCEANOGRAPHER, MAR S OCEANOGRAPHER, MAR 200 km S (1 100 mi SOUTH OH1 R Northing:4626093.830243 Easting: 2562734.070341

Mining system

(Derived from "Nautilus" and "IHC's" available data)

1. Soil conditions

SMS deposit scenario: Solid soil type "Solid Rock".

This scenario implies working with small volumes and high slurry mixture concentrations.

